

Hypersonic Deployable Decelerators

Adaptable, Deployable Entry Technology and Placement (ADEPT) Project

An Overview Presentation for IPPW10 EDL Short Course

Dr. Peter Gage, ADEPT Technical Lead Paul Wercinski, Project Manager

June 15, 2013

Outline

- What is a Mechanically Deployable Decelerator?
 - Adaptable Deployable Entry and Placement Technology (ADEPT)
- ADEPT architecture Mission Infusion Strategy
- Key Development Challenges and Verification Approaches
 - Examples of activities within ADEPT project
- Demonstrating End-to-End Mission Feasibility
- Recent Publications
- Summary

Characteristics of the Entry Problem

Entry velocity

Driven by interplanetary trajectory

Entry angle

- Must be high enough to avoid skip-out
- Affects latitude that can be reached

Ballistic coefficient

Design choice, constrained by packaging

Heating rate

Constrains material selection

Heat load

Drives thermal protection thickness

Deceleration

Drives payload structural requirements

Often Proposed, Seldom Implemented

Parashield, MIT 1988

Phoenix, U. Maryland, IAC 2006

Mechanically Deployed Decelerator Overview

The Problem

 NASA needs to develop mechanically deployable aeroshell entry systems (TA09 Sect 1.1.4) to enable revolutionary capability for Science and Exploration missions beyond Earth **ADEPT:** (n) a low ballistic coefficient entry architecture (m/CdA < 50 kg/m²) that consists of a series of deployable ribs and struts, connected with flexible 3D woven carbon cloth, which when mechanically deployed, functions as a semi-rigid aeroshell system

Adaptable, Deployable Entry and Placement Technology (ADEPT) Provides a Solution

- An innovative, mechanically deployable system achieves lower areal mass and low ballistic coefficient entry using:
 - Advances in 3-D carbon-cloth weaving that provide a TPS that doubles as aerosurface
 - Innovative mechanical design and TPS integration

ADEPT Delivers!

- 30g max decel at Venus (300g SoA with rigid aeroshell)
- 3D carbon fabric weave architecture that has efficient and predictable layer loss
- Demonstrated with arc-jet testing to exceed aerothermal and structural capability required for 1000 kg payload delivery to Venus
- Mission study conducted in collaboration with enduser science team identified enabling performance for sensitive instruments, due to low peak deceleration.

Entry Vehicle Design

Analysis

Hardware Performance verified with Tests

ADEPT Technology Maturation and Mission Infusion Timeline

ADEPT is an <u>Entry Architecture</u> that delivers for Game Changing Science and Exploration Missions in the Near, Mid, and Long term

Deployable Technology and Mission Application

Earth departure

Venus Arrival

- 10.8 km/s entry, -8.25° EFPA
- Peak heating ~300 W/cm2
- Peak g-load ~30 g
- Carbon fiber yarn is woven to create a structural surface and thermal barrier
 - Top layers recede, lower layers carry structural load
 - No need for additional TPS materials
- Driven to deployment by linear actuators

High-Speed Atmospheric Entry Challenge : Achieve low-deceleration loads at Venus

ADEPT Enables Global Mars Access

- ADEPT can eliminate risky EDL events for Robotic Mars
- High altitude deceleration results in benign heating and g-load's
- ADEPT can enable subsonic parachute deployment at high altitudes
 No risky supersonic parachute needed
- Landing site elevations is not an issue Access any site on Mars

ADEPT Requirements and KPPs

Level 1: Development programmatic requirements

Define functional requirements
Define Interface requirements
Identify benefit w.r.t. conventional decelerator
Technology development risk list

Perform tests to show technology capability w.r.t. mission reqts.

Level 2: Generic requirements

Generic functional requirements Generic interface requirements Generic benefits

Level 3: Quantitative mission-specific requirements

Location:VenusMarsEarthMarsMission:VISERobotic/ScienceL2 ReturnHuman

Functional reqts. Interface reqts. Benefits Functional reqts. Interface reqts. Benefits Functional reqts. Interface reqts. Benefits

Functional reqts. Interface reqts. Benefits

Level 4: Test and analysis requirements

Test objectives and hardware requirements
Test environments
Analysis objectives

Prioritized by Level 1
Risk List and Cost

Key Performance Parameters (KPPs)

- Measurable engineering parameters readily understood by engineers
- · Reviewed annually
- Separate threshold and goal values defined for Years 1-2
- KPP success thresholds in Year
 1 and Year 2 focus on the ADEPT-VITaL application of the VISE mission

ADEPT Technology Development Challenges

Challenge Area	Description	Mitigation and Verification
Fabric Thermal Performance	Test at and above anticipated peak heating and heat load anticipated for Venus entry	Arc-jet test series in FY14 to establish performance bounds at and above expected heat rates and integrated heat loads
Fabric Interfaces	C-fabric to: 1) rib; 2) nose; 3) shoulder/ close-out	Arc-jet testing (Sprite-C) and radiant testing will establish performance and failure modes
Deployment	Deployment function and reliability testing on 2 m GTA and fullscale prototype	More relevant flight mission conditions can be replicated on ground for a range of off-nominal states
Thermostructural	Understand thermal design issues- materials selection and performance	Component level radiant tests will validate modeling tools to predict thermal and structural stress
Aerodynamic Stabilit	Blunt body entry vehicles in supersonic to transonic regime may be dynamically unstable	Ballistic Range Testing below Mach 3 and analysis will validate free-flight CFD codes
Integrated System		Utilize thermal vac and vibracoustic test approaches at full scale with flight materials and relevant payload simulator
Fluid Structure Interaction	Flutter of cloth could lead to aerodynamic stability issues	Perform component level testing in relevant environment to validate FSI codes
Manufacturability	Establish manufacturing, assembly and integration at relevant scale	Relevant scale Venus aeroshell manufacturing & assembly processes will be demonstrated
BLAM Test Fixture	Radiant Test Fixture Fabric/Rib Interface Mach contours	on shoulder stowed deployed

C-Fabric & Interface Thermal Performance

Fabric/Rib Interface

Deployment Testing

Carbon Fabric Capability Demonstration

Bi-axial Loaded Aerothermal Mechanical (BLAM) Test Objectives:

- Evaluate the carbon fabric's structural integrity under combined aerothermal and biaxial loading. Intended to be a unit test for the acreage of the ADEPT vehicle (far away from the ribs)
- Evaluate the rate of layer loss as a function of different combined loads.

Test Results:

- Data shows that the carbon fabric is able to maintain load at temperature.
- Biaxial load in the cloth from 188 lbs/in to 750 lbs/in has little to no impact on the rate of layer loss of the carbon fabric.
- Flipping the warp/weft direction had little effect on the rate of layer loss of the carbon fabric.
- Fabric tested easily withstood a heat load of 15.7 k above the 11 kJ/cm² expected for a Venus mission

ADEPT Structures & Mechanisms Trade Study Areas

Trade studies were conducted in four categories to select subsystem configurations for ADEPT development:

Deployment Architecture & Actuation

Stowed Retention (Ribs during launch)

Cloth Interfaces & Rib Configurations

Cloth Folding (For launch)

Subsystem Studies

Trade Study	Suggested Parameters	Implementation
1. Architecture / Layout	Extending nose / folding struts / cloth supported by ribs or tension	Treated as unified trade
2. Actuation	Winch & cables / lead-screw(s) / rotary actuators / active vs. passive	
3. Cloth Attachment	Fixed to ribs / floating / number of seams	Treated as unified trade
4. Rib Construction	Closed section / split / hot vs. cold structure	
5. Tensioning	Primary deployment / secondary deployment / separate tensioners	Assume that primary deployment can deliver adequate tensioning
6. Stowed Retention	External strap / links / hinge locks / rib retention / actuation lock	Evaluated by analysis of response to launch loads
7. Cloth Folding	Out & over / S-shape / Creases	Evaluated through construction of mock-up hardware

In most cases engineering judgment from an experienced group of mechanism designers, structural analysts, and systems engineers was used to develop a feasible configuration.

Assessment relied on Figure of Merit (FOM) scoring by the team members, and vigorous discussion to challenge assumptions and achieve reasonable consensus on the configurations selected.

Insights for Ground Tests and Development Tasks

A. Deployment Testing

- A 2m diameter deployment test article is under development
- Ribs, struts, and cloth thickness scaled geometrically to evaluate function
- Actuators, control logic, sensors, latches configured to assess baseline for flight design
- Rib and nose interfaces configured to assess function of baselined options
- Substitute materials used to accelerate development and reduce cost
- Reconfigurable for testing alternate concepts

B. Thermal Testing

- Initial thermal testing on components and subassemblies rather than full assembly.
- Cloth, rib, and nose sections can be tested on full-scale segments
- Small radiant test facility will be used for initial tests and analysis correlation
- Follow-up testing planned for larger facility capable of a flight heating profile

C. Cloth Attachment

- Clamped-Split rib configuration to be tested at unit level prior to deployment testing
- Pursuing development of high-temperature seam technology for future use

Performance and Functional Verification with Analysis

17

- Shoulder Radius Trades
- Deflected Cloth Heating
- Local Wrinkling Effects
- Permeability Effects

ADEPT

Fabric Dynamic Deflections

- Fabric Oscillation
 Frequencies
- Dampening Solutions

Radiant Test Objectives

Primary Objectives

- Evaluate performance of flight-relevant structure and joints attached to carbon cloth, when carbon cloth is heated to mission-relevant temps.
- Generate temperature distribution data across the structure to anchor thermal analysis software that will be used in flight design.

Component Design and Testing

Design & Test-Fabric/Rib

Grip Surface S-Curve Rod/Pocket Full Noodle

Fabric Wear & Control System Testbed

Rib Profiles

Fastener Patterns

ACC/Fabric Component Testing

Thermostructural Testing

2m GTA Overview A sub-scale 'stepping stone'

General configuration & motion

- Is the deployment motion stable & reliable with cloth attached
- Actuation system performance & robustness to off-nominal conditions

Cloth and rib interfaces

- Cloth connection to nose cap and compatibility with motion
- Rib hinge performance (compatible with cloth)
- Cloth-rib interface (tension capability, lack of wrinkles)
- Cloth outboard edge interface and folding/unfolding
- Rib-strut joint performance (compatible with cloth & motion

Cloth gore manufacturing & integration

- Do cloth integration features function as planned
- Cloth assembly & integration procedures, tolerances, issue

Cloth tensioning via deployment motion

- Does deployment motion provide an evenly tensioned cloth
- Does cloth deflect as expected when loaded

Stowed Configuration

- Cloth shape and ability to fold into stowed launch configuration
- Demonstration of rib retention and release design

GTA Design Features

ADEPT

ADEPT Architecture Satisfies End-to-End Mission Feasibility

- Study Objective: assess the feasibility of the ADEPT concept by quantifying potential benefits for the NRC Decadal Survey's Venus In-Situ Explorer (VISE) Mission and checking for potential adverse interactions with other mission elements, such as launch and cruise.
- The ADEPT project chose to study the Venus Intrepid Tessera Lander (VITaL) design, a VISE lander developed by NASA GSFC for the Decadal Survey's Inner Planets Panel. Results are documented in the ADEPT-VITaL Mission Feasibility Report, dated 13 July 2012.

The ADEPT-VITaL Study Addresses:

- Mission Design Elements:
 - Launch vehicle
 - Interplanetary trajectory design / launch date
 - Cruise CONOPS / time of ADEPT deployment
 - Carrier spacecraft mods. / mass and power impacts
 - VITaL lander modifications and mass savings
- ADEPT-VITaL Vehicle Subcomponent Design:
 - Structures
 - Mechanisms
 - Materials
- Payload Separation Event

- Key Trade Studies:
 - Entry shape / trajectory
 - Structures and mechanisms trades
- Operating environments: stowed configuration
 - Launch vibro-acoustic
 - Cruise cold soak
- Operating environments: deployed configuration
 - Aerothermodynamic loads
 - Structural and aeroelastic loads
 - Aerodynamic stability and flight dynamics

The ADEPT Team used Venus robotic as most challenging class for low ballistic coefficient decelerator applications

- Fully addressed mission feasibility
- Technology development risks identified
- Venus Mission (VISE) Stakeholder (GSFC: Glaze) supporting

ADEPT/NASA Distribution Only

Key Publications - ADEPT

Date	Journal or Event	Title	Author(s)
March 2013	Technical Paper - IEEE Aerospace Conference, Big Sky, MT	Venus In-Situ Explorer Mission Design Using a Mechanically Deployed Aerodynamic Decelerator	B. Smith, E. Venkatapathy, P. Wercinski, B. Yount, D. Prabhu, P. Gage, L. Glaze, C. Baker
March 2013	Technical Paper - AIAA Aerodynamic Decelerator Systems Conference, Daytona Beach, FL	Progress in Payload Separation Risk Mitigation for a Deployable Venus Heat Shield	B. Smith, B. Yount, E. Venkatapathy, E. Stern, D. Prabhu, D. Litton
March 2013	Technical Paper - AIAA Aerodynamic Decelerator Systems Conference, Daytona Beach, FL	Thermal and Structural Performance of Woven Carbon Cloth for Adaptive Deployable Entry and Placement Technology	K. Peterson, B. Yount, N. Schneider, D. Prabhu, J. Arnold, T. Squire, P. Wercinski, J. Chavez-Garcia, E. Venkatapathy
March 2013	Technical Paper - AIAA Aerodynamic Decelerator Systems Conference, Daytona Beach, FL	Structures and Mechanisms Design Concepts for Adaptive Deployable Entry Placement Technology	B. Yount, J. Arnold, P. Gage, J. Mockelman, E. Venkatapathy
March 2013	Technical Paper - AIAA Aerodynamic Decelerator Systems Conference, Daytona Beach, FL	Wake-Fabric Interactions in ADEPT-VITaL	V. Gidzak and G. Candler

Concluding Remarks

- ADEPT, a Low Ballistic Coefficient, Mechanically Deployable Entry System Architecture is a Game Changer:
 - Dramatically decreases severity of the entry environment conditions due to high altitude deceleration
 - Enables use of delicate and sensitive instrumentation.
 - Use of flight qualified instrumentation for lower g-load at Mars and elsewhere
 - Entry mass and the launch mass are considerably reduced
- NASA STMD GCD investment in ADEPT, mechanically deployable aeroshell technology, has broad payoff for Solar System Exploration and Science including Venus and Mars
- Continued Technology Maturation of ADEPT concept will
 - Enable Venus Missions with more comprehensive science to be competitive for the next round of New Frontiers AO
 - Continue Deployable Entry Concept development for Mars robotic and eventual human exploration missions

Backup

ADEPT

ADEPT-VITAL Mission Feasibility

ADEPT Structures & Mechanisms Trade Study Summary

Preferred Options:

Key Factors:

- Reliability
- Robustness
- Redundancy

Preferred Options:

- Cloth retained via bars, clamped to nose cap via travel.
- Min offset straight ribs.
- Cloth clamped between split ribs.
- Strut pivot thru rib.

Extending Nose Cap & Linear Actuators

Key Factors:

- Analysis: survive launch environment
- Reliability

Cloth Interfaces & Rib Configurations

Key Factors:

- Compatible with thick/stiff cloth
- Unfolds well
- Minimize wrinkles or damage

Rib retention links w/ pin puller or bolt cutter

Simple "S" Drape

• In some cases, alternate options will also be carried forward for further development and analysis.